If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10t^2+20t-50=0
a = 10; b = 20; c = -50;
Δ = b2-4ac
Δ = 202-4·10·(-50)
Δ = 2400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2400}=\sqrt{400*6}=\sqrt{400}*\sqrt{6}=20\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{6}}{2*10}=\frac{-20-20\sqrt{6}}{20} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{6}}{2*10}=\frac{-20+20\sqrt{6}}{20} $
| 3x+7x+x*x=56 | | 3x+7x+x^=56 | | -x^2+12x-19=0 | | 10+10x=10+× | | 10+63+26=g | | -19+-5n=-84 | | 72÷x=240 | | 9v-15=8v-12 | | 14=-p+-8 | | x-13÷9=x-23÷4 | | 4x-1=11×-22 | | 1.2x=86.4 | | (1/4)^x−2=16 | | 4x+2=8x= | | (1/4)x−2=16 | | (3)/(5)2x-3=4 | | 5y-1/3y+21=0 | | 0.72x=0.36 | | 13+28+37=g | | 37+25+13=g | | 42+-2x=4x | | 4x=-2×+42 | | 44+18+32=g | | 5x-25÷7x-25=35÷59 | | 5+30+g=75 | | 42+4+g=72 | | -.5+4{2}+1.5=n | | 64+21+g=96 | | x²+12x=160 | | 41+18+g=82 | | 20+18+g=45 | | 51=h/6+48 |